Effect of PM10/PM2.5 on fog in recent years over Indira Gandhi international, airport new Delhi

by

Aditi Singh* a

,

Mahes Kumar a

a. Atmospheric Science Department, Ministry of Earth Sciences, New Delhi, India
* Author to whom correspondence should be addressed
2023.2(1); https://doi.org/10.58396/gges020104
Received: 01 Jun 2023 / Accepted:07 Jul 2023 / Published: 18 Jul 2023

Abstract

Fog plays a significant role in many environmental and ecological processes. The aerosol particles present in the atmosphere becomes fog droplets due to condensation of water vapor on them in high humidity conditions. The formation and intensity of fog over an urban area depends on various factors that may promote or mitigate the process. The combustion processes are responsible for the presence of air pollutants in the atmosphere. The urban heat island effect may raise the temperature, lower the humidity and can even change the wind pattern of any region. The urban areas have often reported increase in frequency of fog due to emissions of air pollutants. The objective of the present study is to analyze the effect of air pollutants in formation fog over Delhi. The concentrations of air pollutants and meteorological observations are utilized for a period of six years in the present work. The study focuses on examining the dominant factors involved in formation of fog. It is found although high values of air pollutants aid in formation of dense fog but relative humidity is the most important factor that influence the formation of fog.
Keywords:

Fog, air pollution, urban, temperature, humidity.

References

[1] Gultepe, I., Tardif, R., Michaelides, S., Cermak, J., Bott, A., Bendix, J. and Jacobs, W. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164(6–7), 1121–1159. DOI: 10.1007/s00024-007-0211-x

[2] Boutle, I., Price, J., Kudzotsa, I., Kokkola, H., and Romakkaniemi, S. (2018). Aerosol–fog interaction and the transition to well‐mixed radiation fog. Atmospheric Chemistry and Physics, 18(11), 7827–7840. DOI: 10.5194/acp-18-7827-2018

[3] Poku, C., Ross, A. N., Blyth, A. M., Hill, A. A., and Price, J. D. (2019). How important are aerosol–fog interactions for the successful modelling of nocturnal radiation fog? Weather 74, 237–243. DOI: 10.1002/wea.3503

[4] Srivastava, S.K., Sharma, A. R. and Sachdeva, K. (2016). A ground observation-based climatology of winter fog: Study over the Indo-Gangetic Plains, India. Int. J. Environ. Ecol. Eng. 7, 742–753

[5] Corell, D., Estrela, M. J., Valiente, J. A., Azorin-Molina, C., and Chen, D. (2020). Influences of synoptic situation and teleconnections on fog-water collection in the Mediterranean Iberian Peninsula, 2003–2012. Int J Climatol 40(7):3297–3317. DOI: 10.1002/joc.6398

[6] Sugimoto, S., Sato, T. and Nakamura, K. (2013). Effects of synoptic scale control on long-term declining trends of summer fog frequency over the Pacific side of Hokkaido Island. Journal of Applied Meteorology and Climatology, 52, 2226–2242. DOI: 10.1175/jamc-d-12-0192.1

[7] Gu, Y., Kusaka, H., Doan, V. Q. and Tan, J. (2019). Impacts of urban expansion on fog types in Shanghai, China: numerical experiments by WRF model. Atmospheric Research, 220, 57–74. DOI: 10.1016/j.atmosres.2018.12.026

[8] Maurer, M., Klemm, O., Lokys, H. L. and Lin, N. H. (2019). Trends of fog and visibility in Taiwan: climate change or air quality improvement? Aerosol Air Quality Research 19, 896–910. DOI: 10.4209/aaqr.2018.04.0152

[9] Hu, S., Zhang, W., Turner, A. G. and Sun, J. (2020). How does El Nino-Southern Oscillation affect winter fog frequency over eastern China? Climate Dynamics 54(1):1043–1056. DOI: 10.1007/s00382-019-05043-1

[10] Bokwa, A., Wypych, A., and Hajto, M. J. (2018). Impact of natural and anthropogenic factors on fog frequency and variability in Krakow, Poland in the years 1966–2015. Aerosol Air Qual Res 18, 165–177. DOI: 10.4209/aaqr.2016.12.0580

[11] Lee, T. F. (1987). Urban clear islands in California central valley fog. Mon Weather Rev 115, 1794–1796. DOI: 10.1175/1520-0493(1987)115<1794:uciicc>2.0.co;2

[12] Gautam, R., Singh, M. K. (2018). Urban heat island over Delhi punches holes in widespread fog in the Indo-Gangetic Plains. Geophys Res Lett. 45, 1114–1121. DOI: 10.1002/2017gl076794

[13] Gu, Y., Kusaka, H., and Tan, J. (2019). Impacts of urban expansion on fog types in Shanghai, China: numerical experiments by WRF model. Atmos Res 220, 57–74. DOI: 10.1016/j.atmosres.2018.12.026

[14] Niu, F., Li, Z., Li, C., Lee, K. H., and Wang, M. (2010). Increase of wintertime fog in China: potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J Geophys Res Atmos 115(D7). DOI: 10. 1029/ 2009J D0134 84.

[15] Jenamani, R. K. (2007). Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi. Current Science,93, 314–322.

[16] Jenamani, R.K. (2012). Development of intensity-based fog climatological information system (daily and hourly) at IGI airport, New Delhi for use in fog forecasting and aviation. Mausam, 63, 89–112. DOI: 10.54302/mausam.v63i1.1459

[17] Syed, F.S., Körnich, H. and Tjernström, M. (2012). On the fog variability over South Asia. Climate Dynamics, 39, 2993–3005. DOI: 10.1007/s00382-012-1414-0

[18] Srivastava, S.K., Sharma, A.R. and Sachdeva, K. (2016). A ground observation-based climatology of winter fog: study over the Indo-Gangetic Plains, India. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 10, 705–716

[19] Ghude, S.D., Bhat, G.S., Prabhakaran, T., Jenamani, R.K., Chate, D. M., Safai, P.D., Karipot, A.K., Konwar, M., Pithani, P., Sinha, V., Rao, P.S.P., Dixit, S.A., Tiwari, S., Todekar, K., Varpe, S., Srivastava, A.K., Bisht, D.S., Murugavel, P., Ali, K., Mina, U., Dharua, M., Rao, J., Padmakumari, B., Hazra, A., Nigam, N., Shende, U., Lal, D.M., Chandra, B.P., Mishra, A.K., Kumar, A., Hakkim, H., Pawar, H., Acharja, P., Kulkarni, R., Subharthi, C., Balaji, B., Varghese, M., Bera, S. and Rajeevan, M. (2017). Winter fog experiment over the IndoGangetic plains of India. Current Science, 112.

[20] Shrestha, S., Moore, G. A. and Peel, M. C. (2018). Trends in winter fog events in the Terai region of Nepal. Agricultural and Forest Meteorology, 259, 118–130. DOI: 10.1016/j.agrformet.2018.04.018

[21] Hingmire, D., Vellore, R. K., Krishnan, R., Ashtikar, N. V., Singh, B. B., Sabade, S. and Madhura, R. K. (2019). Widespread fog over the Indo-Gangetic Plains and possible links to boreal winter teleconnections. Climate Dynamics, 52, 5477–5506. DOI: 10.1007/s00382-018-4458-y

[22] Kutty, S. G., Dimri, A. P. and Gultepe, I. (2019). Climatic trends in fog occurrence over the Indo-Gangetic plains. International Journal of Climatology, 40, 2048–2061. DOI: 10.1002/joc.6317

[23] Gunturu, U. B. and Kumar, V. (2021). Weakened baroclinic activity causes an abrupt rise in fog in the indo-gangetic plain. Geophysical Research Letters, 48. DOI: 10.1029/2021gl096114

[24] Dimri, A. (2013). Relationship between enso phases with northwest India winter precipitation. International Journal of Climatology, 33, 1917–1923. DOI: 10.1002/joc.3559

[25] Tripathi, S. N., Tare, V., Chinman, N., Srivastava, A. K. and Dey, S. (2006). Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. J. Geophys. Res. 111: D23209. DOI: 10.1029/2006jd007278

[26] Gautam, R., Hsu, N. C., Kafatos, M. and Tsay, S. C. (2007). Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J. Geophys. Res. 112: D05207. DOI: 10.1029/2005jd007036

[27] Mehta, B., Venkataraman, C., Bhushan, M. and Tripathi, S. N. (2009). Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos. Environ. 43, 1288–1295. DOI: 10.1016/j.atmosenv.2008.11.041

[28] Mohan, M. and Payra, S. (2014). Aerosol number concentrations and visibility during dense fog over a subtropical urban site. J. Nanomater. https://doi.org/10.1155/2014/495457. DOI: 10.1155/2014/495457

[29] Safai, P. D. and Co-authors (2019). Two-way relationships between aerosol and fog – A case study at IGI airport, New Delhi, Aerosol and Air Quality Research, 19, 71-79. DOI: 10.4209/aaqr.2017.11.0542

[30] Beig, G., Chate, D. M., Sahu, S. K., Parkhi, N. S., Srinivas, R., and Ali K. (2015). System of air quality forecasting and research (SAFAR India). 

[31] Beig, G., Sahu, S. K., Singh, V., Tikle, S., Sobhana, S. B., Gargeva, P., et al (2020). Objective evaluation of stubble emission of North India and quantifying its impact on air quality of Delhi. Sci Total Environ 709:136126. DOI: 10. 1016/j. scito tenv. 2019. 136126. 

[32] Tiwari, S., Srivastava, A. K., Bisht, D. S., Bano, T., Singh, S., Behura, S., Srivastava, M. K., Chate, D. M. and Padmanabhamurty, B. (2009). Black Carbon and Chemical Characteristics of PM10 and PM2.5 at an Urban Site of North India. J. Atmos. Chem. 62, 193–209. DOI: 10.1007/s10874-010-9148-z

[33] Gupta, P. K., Singh, K., Dixit, C. K., Singh, N., Sharma, C., Sahai, S., Jha, A. K., Singh, D. P., Tiwari, M. K. and Garg, S. C (2007). Spatial Distribution in Aerosol Mass and Size Characteristics between Delhi and Hyderabad during Land Campaign in February 2004. Indian J. Radio Space Phys. 36: 576–581 

[34] Srivastava, S. K., Sharma, A. R. and Sachdeva, K. (2017). An observation-based climatology and forecasts of winter fog in Ghaziabad, India. Weather, 72, 16–22. DOI: 10.1002/wea.2743

[35] India Meteorological Department. 1982.Weather Codes. IMD: Pune, India.

[36] Jaswal, A. and Koppar, A. (2013). Climatology and trends in nearsurface wind speed over India during 1961–2008. Mausam, 64, 417–436. DOI: 10.54302/mausam.v64i3.725

[37] Yan, S., Zhu, B., Huang, Y., Zhu, J., Kang, H., Lu, C. and Zhu, T. (2020) To what extents do urbanization and air pollution affect fog? Atmospheric Chemistry and Physics, 20, 5559–5572. DOI: 10.5194/acp-20-5559-2020